中国计量网 http://www.chinajl.com.cn/
中国计量网——计量行业门户网站
计量资讯速递
您当前的位置: 首页 > 学苑 > 不确定度

立式光学计的测量不确定度分析

发布时间:2008-05-26 作者:谢艳平 许海燕 来源:www.jlbjb.com 浏览:6048

安徽省活塞厂  谢艳平  合肥工业大学  许海燕


    

一、工作原理

    立式光学计应用自准直原理和正切杠杆原理,将光学杠杆和正切杠杆机构结合在一起实现长度尺寸的测量。
    

二、测量装置的不确定度分析

    在立式光学计上用标称值为6mm的四等量块作标准,对本厂专用标称尺寸为的活塞环槽塞规(工件工作部位材料为硬质合金)进行相对测量。测量温度为(20±0.5)℃。在立式光学计上作相对测量时,其标准不确定度主要来源于以下几方面。
    1.示值误差的标准不确定度分量
    由检定规程查得,立式光学计的示值误差为±0.25μm, 在测量范围内误差的分布符合正态分布,覆盖因子k=3,其标准不确定度分量为
    u1=0.25/3=0.083μm
    2.标准量块极限误差的标准不确定度分量
    四等量块的极限误差为
    ΔL1=(0.2+2L)μm
        =(0.2+2×6×10-3)μm
        =0.0212μm
    式中:L——量块的长度(L=6mm);ΔL1——量块的极限误差。
    误差分布符合正态分布,覆盖因子k=3。
    标准量块的标准不确定度分量为u2=0.212/3=0.071μm
    3.定位误差的标准不确定度分量
    在立式光学计上相对测量,由工作台工作平面定位,平面对测量轴线不垂直所产生的测量误差与被测件长度无直接关系,而仅决定于被测件和标准件的长度差。
    δ=±1/2a2ΔL2
    式中:ΔL2——被测件与标准件的长度差(ΔL2=0.0344mm);a——工作台平面与仪器测量轴线的垂直度误差;δ——定位误差。
    对可调试工作台,影响工作台表面与测量轴线的不垂直的因素有以下三方面:
    (1)工作台的调整误差,用四等量块接触φ8平面测帽的一半时,在前、后、左、右四个位置允许示值差为0.3μm,相当于测帽平面与工作台平面的平行性误差,其值为
    
    (2)立柱和光学计管直线度误差的影响
    
    (3)测帽孔轴心线与其平面的垂直度误差的影响
    a3=180″
                 =180×π/(180×3600) 弧度
    因此,测量轴线与可调工作台面的最大垂直度误差为
    
    由此引起的测量误差为
    
    定位误差的分布不妨假设为均匀分布,覆盖因子k=3,定位误差的标准不确定度分量为
    
    4.测量力误差的标准不确定度分量
    
    式中:D——测头直径(D=40mm);P——测量力(P=2N);K——变形系数(K=0.2);ΔL3——测量力引起的误差。
    测量力的误差分布为均匀分布,覆盖因子k=3,测量力误差的标准不确定度分量为
    
    5.仪器分辨力误差标准不确定度分量
    仪器的最小分度值为1μm,误差为0.1μm,且分布为均匀分布,覆盖因子k=,其标准不确定度分量为
    
    6.温度误差的标准不确定度分量
    ΔL4=L[ap(tp-20)-an(tn-20)]
    式中:ΔL4——由温度引起的被测件相对于标准件的长度变化量;L——被测长度(L=6.034mm);aptp——被测件的线膨胀系数和温度;antn——标准件的线膨胀系数和温度。
    ap=14.5×10-6/℃
    an =11.5×10-6/℃
    tp=tn=20.5℃
    ΔL4=6.034×[(14.5-11.5)×10-6×(20.5-20)]=0.009μm
    温度不稳定产生的标准不确定度分量呈三角形分布,覆盖因子取,则标准不确定度为
    
    上述各标准不确定度分量间相互独立,互不相关。
    7.立式光学计测量装置的合成不确定度
    
    8.立式光学计测量装置的扩展不确定度
    u=k×uc=3×0.142=0.426μm(置信概率p=99%,k取3)
    三、立式光学计测量装置测量活塞环槽塞规的测量不确定度分析
    通过对标称尺寸为环槽塞规,满足测量条件下等精度测量10次,以标称值为6mm的四等量块作对零用量块,测得结果如下(单位:mm)
    r1=0.0330    r2=0.0331
    r3=0.0329    r4=0.0328
    r5=0.0330    r6=0.0332
    r7=0.0329    r8=0.0328
    r9=0.0331    r10=0.0327
    1.算术平均值=0.03295=0.0330mm(根据数据修约)
    2.其标准差为
    3.其标准不确定度为
    4.合成标准不确定度为
    
    5.扩展不确定度U=k×UC=3×0.152μm=0.456μm≈0.5μm(根椐数字修约),(置信概率p=99%,k取3)。
    6.最后的测量结果为
    (6.0330±0.0005)mm(置信概率p=99%,k取3)
    通过分析可看出,在立式光学计上进行测量满足环槽塞规对准确度的要求,可实现高准确度测量。

分享到:
通知 点击查看 点击查看
公告 征订通知 征订通知
会员注册
已有账号,
会员登陆
完善信息
找回密码