一、标准溶液配制方法
取1.5985gPb(NO3)2定量转入1000mL容量瓶,水稀至刻度。用吸管移取此标液10mL于100mL容量瓶,水稀至刻度作为子液,再用吸管取子液10mL于100mL容量瓶,水稀至刻度。以上所用玻璃量器皆为B级,试计算配成的[Pb2+]0.01mg/mL溶液的不确定度。
二、数学模型
依据上述配制方法,可以给出配制后的标准溶液质量浓度ρ,表达为:
式中:ρ——溶液质量浓度,g/mL;——硝酸铅中铅的质量分数;m0——溶质Pb(NO3)2的质量,m0=1.5985g;V1——1000mL容量瓶,其最大允许误差MPE1:±0.80mL;V2、V4——10mL单标线吸管,其最大允许误差MPE2=MPE4:±0.040mL;V3、V5——100mL容量瓶,其最大允许误差MPE3=MPE5:±0.20mL。
三、方差与传播系数
由于函数f(ρ)为指数函数,我们采用指数函数的合成标准不确定度关系式:
不必求偏导,而只需计算输入量的相对标准不确定度分量即可,且pi为正1或负1。
四、标准不确定度分量的评定
1.溶质Pb(NO3)2取样引入的不确定度分量u0
该项来源由于无其他信息,我们根据给出值的有效位,按该引用值的修约区间,判定其不确定度修约区间为δX=0.0001g,按均匀分布,
u0=0.29δX=0.029mg
u0rel=u0/m0=1.8×10-5
2.1000ml容量瓶定溶引入的不确定度分量u1
(1)修正值ΔV1=0的标准不确定度u11按1000mL容量瓶最大允许误差引入的不确定度分量计算,服从均匀分布:
(2)单次取1000mL的重复性标准偏差通过以前评定之值为s(V1)=0.0034mL
∴u12=s(V1)=0.0034mL
∴u12rel=u12/V1=3.4×10-6
u11rel与u12rel不相关,合成得:
3.10mL单标线吸管移液引入的不确定度分量
(1)10mL单标线吸管修正值ΔV2=0的标准不确定度按最大允许误差引入的不确定度分量计算,服从均匀分布:
两次用10mL单标线吸管移液,u21与u41输入量估计值强相关,且r=1,按线性合成:
u2rel=u21rel+u41rel=0.46%
(2)单次取10ml的重复性标准偏差通过以前评定之值为s(V2)=s(V4)=0.0041mL
u22=u42=s(V2)=0.0041mL
u22rel=u42rel=0.041%
输入量估计值不相关,合成得:
4.100ml容量瓶稀释过程引入的不确定度分量
(1)100ml容量瓶修正值ΔV3=0的标准不确定度按最大允许误差引入的不确定度分量计算,服从均匀分布:
两次用100mL容量瓶定溶,u31与u51两输入量估计值强相关,且r=1,按线性合成:
urel=u31rel+u51rel=0.24%
(2)单次取100mL的重复性标准偏差通过以前评定之值为s(V3)=s(V5)=0.0059mL
u32=u52=s(V3)=0.0059mL
u32rel=u52rel=0.0059%
两输入量估计值不相关,合成得:
五、标准不确定度一览表(见表1)
六、合成标准不确定度
1.由于u0rel,u1rel,u2rel,u3rel,u4rel,u5rel彼此独立,代入式(1)得:
最后配成浓度为0.01mg/mL的溶液,故:
uc=0.01mg/ml×ucrel=5.2×10-5mg/mL
2.若不使用同一吸管与容量瓶,那么u11与u12、u21与u41、u31与u52则不相关。分别计算如下(见表中的数据):
通过比较可以看出:使用不同的吸管与容量瓶不仅避免了不确定度分量的相关性,而且还可以减小整个溶液配制过程中所带来的不确定度。
七、小结
1.以上分析中假定Pb(NO3)2的纯度为100%;配制溶液时的实际温度与容量瓶校正温度(20℃)不同带来的不确定度分量,因玻璃体积膨胀系数为15×10-6/℃-1较小,可忽略;计算浓度时由于元素的相对原子量Ar带来的不确定度较小也未予考虑。
2.根据数学模型的特点——指数函数关系,采用相对标准不确定度进行简单的平方和,即得到相对合成标准不确定度。
3.本例共分析输入不确定度分量11个,其中既有相关分量也有独立分量,通过对强相关的两个分量先进行线性合成,然后便是独立分量的方差合成。这样处理后,使问题得到了简化。同时,列出表格一目了然:只有u2、u4两分量起主要作用,合成时,可略去其他分量简化计算。
内容推荐
更多>2019-03-28